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Abstract
This paper is composed of two parts. In the first part, we provide an upper
bound for the number of invariant hyperplanes of the polynomial vector fields
in n variables. This result generalizes those given in Artés et al (1998 Pac.
J. Math. 184 207–30) and Llibre and Rodrı́guez (2000 Bull. Sci. Math. 124
599–619). The second part gives an extension of the Darboux theory of
integrability to polynomial vector fields on algebraic varieties.

PACS numbers: 02.30.Ik, 02.10.De

1. Introduction and statement of the main results

Nonlinear ordinary differential equations appear in many branches of applied mathematics
and physics, for instance the Lorenz system, the Lotka–Volterra system and so on. Here we
consider only the polynomial differential systems.

This paper is separated into two parts. The first part is related to the maximum number
of invariant hyperplanes. The second part provides an extension of the Darboux theory of
integrability, which gives a link between the invariant algebraic hypersurfaces and the first
integrals. Hence, these two parts are related closely.

We must mention that not only in mathematics, but also in physics, the research on
invariant hyperplanes and invariant surfaces is important. For example, using invariant
surfaces Giacomini and Neukirch [7] constructed families of two-dimensional surfaces
transverse to the flow of the Lorenz system, such that each of the surfaces separates the phase
space R

3 and hence can be used to describe the location of the global attractor of the flow. In
[2, 8, 11] the authors studied the integrals of motion for some famous three-dimensional
non-Hamiltonian dynamical systems. In fact, every integral of motion can be obtained from
an invariant surface or an invariant plane with a constant cofactor. So, searching for integrals
of motion is equivalent to obtaining the mentioned invariant surfaces or invariant planes.
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The integrability of a dynamical system is also one of the important subjects considered
by physicists. Because when a system has a first integral, we can restrict the motion of the
orbits to a suitable surface. In really dynamical models, the motions of the objects are usually
controlled on some given surface or variety, but not in the whole space. It is one of the
motivations that we extend the Darboux integrability in the whole space to that on a variety.

This paper is organized as follows. In sections 1.1 and 1.2 we give some definitions and
state our main results on invariant hyperplanes and the extension of Darboux integrability,
respectively. In sections 2 and 3 we prove theorems 1 and 2, respectively. The proof of
theorem 3 is given in section 4.

1.1. Invariant hyperplanes

Let K = R, C or other algebraically closed fields, and let Kn be the affine n space over K

formed by all n-tuples of elements of K. By definition, a polynomial vector field in Kn is of
the form

X = P1(x1, . . . , xn)
∂

∂x1
+ · · · + Pn(x1, . . . , xn)

∂

∂xn

(1)

where P1, . . . , Pn ∈ K[x1, . . . , xn]. As usual, K[x1, . . . , xn] denotes the polynomial ring
over K in the variables x1, . . . , xn. We state that the vector field X has degree m if m =
max{deg Pi, i = 1, . . . , n}. More precisely, we state that X has degree m = (m1, . . . ,mn) if
mi = deg Pi for i = 1, . . . , n.

An invariant hyperplane of the vector field X is a hyperplane f (x1, . . . , xn) = 0 with
f ∈ K[x1, . . . , xn] a polynomial of degree 1 and Xf = kf for some k ∈ K[x1, . . . , xn]. In
particular, we call it an invariant plane if n = 3, or an invariant line if n = 2. In the definitions
of the last three notions, if deg f > 1, we call f (x1, . . . , xn) = 0 (or simply f ) an invariant
algebraic hypersurface if n > 3, an invariant algebraic surface if n = 3, or an invariant
algebraic curve if n = 2.

If the vector field X has finitely many invariant hyperplanes, we denote by α(n, m)

(respectively α(n,m)) the supremum of the number of hyperplanes invariant by the vector
field X of degree m = (m1, . . . ,mn) (respectively m) in n variables.

For planar polynomial vector fields of degree m, Artés et al [1, proposition 4] proved
that α(2,m) � 3m − 1. Sokulski [19] and Zhang and Ye [23] obtained α(2, 3) = 8 and
α(2, 4) = 9. Artés et al [1] obtained α(2, 5) = 14. For m > 5, what is the exact value of
α(2,m)? It still remains an open problem.

For polynomial vector fields of degree m = (m1, . . . ,mn) in Kn, Llibre and Rodrı́guez
[13, proposition 6] proved that if X is a regular polynomial vector field, then

α(n, m) �
n∑

i=1

mi + (m − 1)

(
n

2

)
= β(n, m)

where m = max{mi, i = 1, . . . , n}. Moreover, they showed that if m = (2, . . . , 2) or
m = (3, . . . , 3) then α(n, m) = β(n, m), and posed the following open problem: determine
the exact value of α(n, m).

Our first result generalizes proposition 4 of [1] and proposition 6 of [13].

Theorem 1. For any polynomial vector fields of degree m in Kn, we have

α(n, m) �
n∑

i=1

mi + (m − 1)

(
n

2

)
= β(n, m).
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This theorem shows that if n = 2, then α(2,m) � m1 + m2 + (m − 1) � 3m − 1. It
improves proposition 4 of [1]. The following example provides an application of the theorem
to a dynamical model.

Example 1. The two-dimensional Lotka–Volterra system

ẋ = x(a1x + b1y + c1) ẏ = y(a2x + b2y + c2)

with ai, bi, ci real constants, under the conditions a2 = b1 = 0, c1 = c2 and a1b2 �= 0, has
the maximum number of, i.e. five, invariant lines: f1 = y + c1

b2
with the cofactor k1 = b2y,

f2 = x + c1
a1

with the cofactor k2 = a1x, f3 = x − b2
a1

y with the cofactor k3 = a1x + b2y + c1

and the two known ones f4 = x with the cofactor k4 = a1x + c1 and f5 = y with the cofactor
k5 = b2y + c1, respectively.

Of course, under other suitable conditions we can get five invariant lines for the last system.
In section 1.2 we will use these five invariant lines and the Darboux theory of integrability to
construct a first integral for the two-dimensional Lotka–Volterra system.

The following theorem answers the open problem of [13] for m = 1.

Theorem 2. For m = max{mi, i = 1, . . . , n} = 1, the following statements hold:

(a) The necessary condition for a linear vector field of degree m = (m1, . . . ,mn) to have
finitely many invariant hyperplanes is m = (1, . . . , 1) or m = (0, 1, . . . , 1).

(b) There exist linear vector fields of degree m = (m1, . . . ,mn) with m1 = · · · = mn = 1,
or m1 = 0 and m2 = · · · = mn = 1 such that the vector fields have exactly∑n

i=1 mi = β(n, 1) invariant hyperplanes.
(c) The set of linear vector fields with exactly

∑n
i=1 mi invariant hyperplanes is open and

dense in the linear space formed by all linear vector fields.

We remark that the notion of open and dense is considered under the well-known
coefficient topology on the space of linear vector fields.

1.2. The Darboux integrability of polynomial vector fields on algebraic varieties

In 1878, Darboux [5] provided a link between algebraic geometry and the search of first
integrals, and showed how to construct the first integral of polynomial vector fields in R

2 or
C2 having sufficiently many invariant algebraic curves. The extensions of the Darboux theory
of integrability to polynomial systems in Rn or Cn are due to Jouanolou [10] and Weil [20].
In [3, 4, 15] the authors developed the Darboux theory of integrability essentially in R2 or
C2 considering not only the invariant algebraic curves but also the exponential factors, the
independent singular points and the multiplicity of the invariant algebraic curves. Recently, in
[9, 14, 16] there are extensions of the Darboux theory of integrability to polynomial systems on
regular surfaces. In this paper, we extend the theory to polynomial vector fields on algebraic
varieties.

Let K be a fixed algebraically closed field. We assume that V ⊂ K
n is an affine

algebraic variety. Then I (V) = {f ∈ K[x1, . . . , xn] : f (x) = 0 for all x ∈ V} is a prime
ideal (see Fulton [6, page 15]). Furthermore, we assume that V is smooth, i.e. there exist
f1, . . . , fk ∈ K[x1, . . . , xn] with k < n such that V = V (f1, . . . , fk) = {p ∈ K

n : fi(p) = 0,

for i = 1, . . . , k} and rank J (f ) = k on V , where J (f ) is the Jacobian matrix of
f = (f1, . . . , fk).
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Two polynomials f and g in K[x1, . . . , xn] are said to be related, denoted by f ∼ g,
if f − g ∈ I (V). By Hilbert’s Nullstellensatz, if this is the case there exist N ∈ N and
A1, . . . , Ak ∈ K[x1, . . . , xn] such that

(f − g)N = A1f1 + · · · + Akfk.

We denote by f the set of all polynomials related with f .
For any g, h ∈ f , we state that g < h if deg g < deg h. Thus, f forms a partial order set.

It has a minimum element. In what follows, f always means that f is the minimum element
in f . We call f a polynomial on V if f is a polynomial over K

n; the degree of f is that of f .
The natural projection

π : Km−1[x1, . . . , xn] �→ Km−1[x1, . . . , xn]/I (V)

induces an exact sequence

0 → ker(π) → Km−1[x1, . . . , xn] → Km−1[x1, . . . , xn]/I (V)

where Km−1[x1, . . . , xn] denotes the set of polynomials of degree � m − 1. Hence, we have

dim (Km−1[x1, . . . , xn]/I (V)) = dim (Km−1[x1, . . . , xn]) − dim (I (V) ∩ Km−1[x1, . . . , xn]).

We denote this dimension by d(m − 1).

Example 2 (Llibre and Zhang [16]). If V is a smooth (or regular) hypersurface defined by a
polynomial of degree d, then

d(m − 1) = dim (Km−1[x1, . . . , xn]/I (V)) =
(

n + m − 1
n

)
−
(

n + m − 1 − d

n

)
.

By definition a polynomial vector field on V is a vector field of the form

X = P 1
∂

∂x1
+ P 2

∂

∂x2
+ · · · + P n

∂

∂xn

on V

with Pi ∈ K[x1, . . . , xn], P i ∈ K[x1, . . . , xn]/I (V) and (P 1, P 2, . . . , P n) belong to the
tangent bundle of V . We state that the polynomial vector field X on V has degree m if
max {deg P i, i = 1, . . . , n} = m.

For f ∈ K[x1, . . . , xn]/I (V), we state that {f = 0} ∩ V is an invariant algebraic variety
of the vector field X on V (or simply f is an invariant algebraic variety of X on V) if the
following statements hold:

(i) There exists a k ∈ K[x1, . . . , xn]/I (V) such that
n∑

i=1

Pi

∂f

∂xi

= kf on V .

The polynomial k on V is called the cofactor of f on V .
(ii) The hypersurface f = 0 and the variety V have transversal intersection, i.e. for each

p ∈ {f = 0} ∩ V , ∂f

∂x
(p) ⊗ ∂fα

∂x
(p) �= 0, α = 1, . . . , k, where ⊗ denotes the outer product

of two vectors.

We note that for the polynomial vector field X on V of degree m, the cofactor k has degree
at most m − 1.

An exponential factor F of the vector field X on V is an exponential function of the form
eg/h with g, h ∈ K[x1, . . . , xn]/I (V), (f, g) = 1 and satisfying XF = KF on V for some
K ∈ Km−1[x1, . . . , xn]/I (V). The polynomial K on V has degree at most m− 1, and is called
an exponential factor of F on V .
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The singular point of X on V is a point x ∈ V such that Pi(x) = 0 for i = 1, . . . , n. It
is well known that for each point p = (p1, . . . , pn) ∈ K

n, mp = I (x1 − p1, . . . , xn − pn) ⊂
K[x1, . . . , xn] is a maximal ideal. We state that the r points p(1), . . . , p(r) onV are independent
if

dim

((
r⋂

i=1

mp(i)

)⋂
(Km−1[x1, . . . , xn]/I (V))

)
= d(m − 1) − r.

Let U ⊂ K
n be an open set. We state that a function H(x, t) : U ×K → K is an invariant

of the vector field X on V∩ U if H(x(t), t) ≡ constant for all values of t for which the solution
x(t) of X is defined on V ∩ U . If an invariant H is independent of t, it is called a first integral.
If a first integral H is a ratio of two analytic functions, it is called a generalized rational first
integral (see [12]).

The following result provides an extension of the Darboux theory of integrability to
polynomial vector fields on algebraic varieties.

Theorem 3. Let V be an irreducible smooth algebraic variety in K
n. Assume that the

polynomial vector field X on V of degree m has µ invariant algebraic varieties f i with
cofactors ki for i = 1, . . . , µ; ν exponential factors F j = egj /hj with cofactors Kj for
j = 1, . . . , ν; and r independent singular points xs of X on V such that f i(xs) �= 0 for
i = 1, . . . , µ and s = 1, . . . , r . The following statements hold:

(a) For k < n we have

(a1) If there exist αi, βi ∈ K not all zero such that
µ∑

i=1

αiki +
ν∑

j=1

βjKj ∈ I (V) (2)

then the following function (multi-valued) of the Darbouxian type
µ∏

i=1

f
αi

i

ν∏
j=1

F
βj

j on V (3)

is a first integral of the vector field X on V .
(a2) If µ + ν + r � d(m − 1) + 1, then there exist αi, βj ∈ K not all zero such that (2)

holds.
(a3) If there exist αi, βj ∈ K not all zero such that

∑µ

i=1 αiki +
∑ν

j=1 βjKj + σ ∈ I (V)

for some σ ∈ K\{0}, then the following function (multi-valued)
µ∏

i=1

f
αi

i

ν∏
j=1

F
βj

j eσ t

is an invariant of X on V .

(b) For k = n − 2 and K = C, if µ + ν + r � d(m − 1) + 2, the vector field X on V has a
generalized rational first integral, and consequently all trajectories of the vector field are
contained in invariant analytic curves.

We now give some examples to show the applications of theorem 3 to dynamical models.

Example 3. Under the conditions of example 1, the Lotka–Volterra system is Darbouxian
integrable. Because we have the five cofactors satisfying k1 + k2 + k3 + k4 − 2k5 = 0, hence

H(x, y) = f1f2f3f4f
−2

5

is a rational first integral of the system. Consequently, all the orbits of the system are given
by the curves µf1f2f3f4 − νf 2

5 = 0 with µ and ν arbitrary real constants and µ2 + ν2 �= 0.



9936 X Zhang

Example 4. For the Lorenz system [17]

ẋ = s(y − x) ẏ = rx − y − xz ż = −bz + xy

with s, r, b real constants, in [21] we proved that if s �= 0, it has a Darbouxian first integral if
and only if b = 1, s = 1

2 and r = 0. The first integral is (y2 + z2)/(x2 − z)2. Hence, in this
case the Lorenz system has no chaotic phenomena.

Example 5. For the Rössler system [18]

ẋ = −(y + z) ẏ = x + ay ż = b − cz + xz

with a, b, c real constants, we proved [22] that it has a Darbouxian first integral if and only if
a = b = c = 0. If it is the case, the system has a Darbouxian first integral H1 = z e−y and a
polynomial first integral H2 = x2 + y2 + 2z. Consequently, it is completely integrable. The
orbits of the system are given by the curves {z e−y = c1} ∩ {x2 + y2 + 2z = c2}, where c1 and
c2 are arbitrary real constants.

2. The proof of theorem 1

We first introduce the following definition. The rth extactic hypersurface of X in K
n is defined

by the equation

Er (X) =

∣∣∣∣∣∣∣∣∣

v1 v2 . . . vl

X(v1) X(v2) . . . X(vl)

...
...

. . .
...

Xl−1(v1) Xl−1(v2) . . . Xl−1(vl)

∣∣∣∣∣∣∣∣∣
= 0

where (v1, . . . , vl) is a basis of the K-vector subspace Kr [x1, . . . , xn] of K[x1, . . . , xn], and
Xj (vi) = X(Xj−1(vi)). Here, we use the notation X0(vi) = vi . It is well known that
dim Kr [x1, . . . , xn] = (

n + r
r

)
. So, we have l = (

n + r
r

)
. This definition is similar to that of [15],

where the authors defined the extactic curves for a planar polynomial vector field.
We remark that the definition of the rth extactic hypersurface of the vector field X is

independent of the chosen basis of Kr [x1, . . . , xn]. The following result gives a relationship
between the rth extactic hypersurface and the invariant algebraic hypersurfaces.

Lemma 4. Every algebraic hypersurface of degree � r invariant by the vector field X is a
factor of Er (X).

Proof. Let f be an invariant algebraic hypersurface of degree s � r for the vector field X,
and let the corresponding cofactor be kf . Since Er (X) does not dependent on the choice of
the basis for Kr [x1, . . . , xn], we can take vi = f for some 1 � i � l = (

n + r
r

)
. Then for

X(f ) = kf f we have

X2(f ) = (
k2

f + X(kf )
)
f

. . . . . .

Xi(f ) = Mi(m−1)f

where Mi(m−1) is a polynomial of degree at most i(m − 1) in the variables x1, . . . , xn. So, the
polynomial f divides Er (X). This proves the lemma. �
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Proof of theorem 1. We consider the 1st extactic hypersurface E1(X). Choose v1 = 1, v2 =
x1, . . . , vl = xn as a basis of K1[x1, . . . , xn], where l = n + 1. Then Xj (v1) = 0 for
j = 1, . . . , n, and X(xi) = Pi for i = 1, . . . , n. Hence, we have

E1(X) =

∣∣∣∣∣∣∣∣
P1 P2 . . . Pn

X(P1) X(P2) . . . X(Pn)

. . . . . . . . . . . .

Xn−1(P1) Xn−1(P2) . . . Xn−1(Pn)

∣∣∣∣∣∣∣∣
.

Set m = max{mi, i = 1, . . . , n}. Then an easy computation gives

deg Xj (Pi) � j (m − 1) + mi i = 1, . . . , n j = 1, . . . , n − 1. (4)

From the definition of determinants, we get

E1(X) =
∑

(−1)sX0(Pi1

)
X
(
Pi2

)
. . . Xn−1(Pin

)
where i1i2, . . . , in is a permutation without repetition of 1, 2, . . . , n, the sum runs over all
permutations without repetition of 1, 2, . . . , n, and s is the number of inverted sequences for
the permutation i1i2, . . . , in with respect to the standard sequence 1, 2, . . . , n.

Using inequality (4), we have

deg
(
X0
(
Pi1

)
X
(
Pi2

)
. . . Xn−1

(
Pin

))
� mi1 +

(
(m − 1) + mi2

)
+ · · · +

(
(n − 1)(m − 1) + min

)
=

n∑
i=1

mi + (m − 1)

(
n

2

)
.

This implies that

degE1(X) �
n∑

i=1

mi + (m − 1)

(
n

2

)
.

Combining lemma 4 and this last inequality, we have finished the proof of the theorem. �

We remark that since dim K1[x1, . . . , xn] = n + 1, the vector field X has at most n + 1
independent invariant hyperplanes.

3. The proof of theorem 2

Proof of statement (a). We first provide the following results without proof, because it is
easy to check.

Proposition 5. For the polynomial vector field X of degree m = (m1, . . . ,mn), the following
statements hold:

(i) If Pn = 0, the vector field X has a first integral H = xn, and consequently it has infinitely
many invariant hyperplanes.

(ii) If mn−1 = mn = 0 and Pn−1Pn �= 0, the vector field X has a first integral
H = Pnxn−1 − Pn−1xn, and consequently it has infinitely many invariant hyperplanes.

From this proposition, statement (a) follows. �

Proof of statement (b). Consider the following linear system

ẋi = ai0 + ai1x1 + · · · + ainxn = Pi i = 1, . . . , n. (5)
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Let f = b0 + b1x1 + · · · + bnxn = 0 be an invariant hyperplane with a constant cofactor k.
From the definition of invariant hyperplane, i.e. the equation

n∑
i=1

Pi

∂f

∂x
= kf (6)

we get 


−k a10 a20 . . . an0

0 a11 − k a21 . . . an1

0 a12 a22 − k . . . an2

...
...

...
. . .

...

0 a1n a2n . . . ann − k







b0

b1

b2

...

bn


 = 0. (7)

From proposition 5, in what follows we consider only two cases: m = (1, . . . , 1) and
m = (0, 1, . . . , 1) with P1 �= 0.

Case 1. m1 = · · · = mn = 1. By selecting suitable aij for i, j = 1, . . . , n, the following
matrix

A =




a11 a21 . . . an1

a12 a22 . . . an2

...
...

. . .
...

a1n a2n . . . ann




has exactly n different eigenvalues not equal to zero, denoted by k1, . . . , kn. Corresponding
to each eigenvalue ki , the matrix A has a unique independent eigenvector, denoted by(
b

(i)
1 , . . . , b(i)

n

)
. Using ki instead of k in (7), since ki �= 0, we get that the system of linear

equations (7) has a unique non-zero independent solution
(
b

(i)
0 , b

(i)
1 , . . . , b(i)

n

)
. This implies

that there exist systems (5) of degree m = (1, . . . , 1) with exactly n invariant hyperplanes.
This proves statement (b) in the case m = (1, . . . , 1).

Case 2. m = (0, 1, . . . , 1) and P1 = a10 �= 0. Consider the algebraic system (7) with
a11 = a12 = · · · = a1n = 0. It is clear that there exist matrices

B =




a22 . . . an2

...
. . .

...

a2n . . . ann




with exactly n−1 different eigenvalues not equal to zero,denoted by k2, . . . , kn. Corresponding
to each ki , the linear equation (B − kiE)bi = 0 has a unique non-zero independent solution
bi = (

b
(i)

2 , . . . , b(i)
n

)
, where E is the unit matrix of order n−1. Working in a way similar to the

proof of case 1, we get that the algebraic equation (7) has n− 1 different solutions. Therefore,
there exist systems (5) of degree m = (0, 1, . . . , 1) such that they have exactly n− 1 invariant
hyperplanes. Hence, we have proved statement (b). �

Proof of statement (c). From the proof of case 1 of statement (b), we get that the existence
of n invariant hyperplanes for the vector field X depends on the number of eigenvectors of the
matrix A. It is well known that the subspace of the square matrices of order n with non-zero
eigenvalues and n different eigenvectors is open and dense in the space of all square matrices
of order n. This implies that statement (c) holds in the case m1 = · · · = mn = 1.
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Combining equation (7) and the matrix B, and working in a way similar to the proof of
the last paragraph, we can prove statement (c) in the case m1 = 0 and m2 = · · · = mn = 1.
This completes the proof of statement (c). So, we have finished the proof of the theorem.

�

4. The proof of theorem 3

From the assumptions and the definitions of invariant algebraic varieties and exponential
factors, it follows that on the variety V , Xfi = kifi for i = 1, . . . , µ, and XFj = KjFj for
j = 1, . . . , ν.

Proof of statement (a1). Since there exist αi, βj ∈ K not all zero such that (2) holds, i.e.∑µ

i=1 αiki +
∑ν

j=1 βjKj = 0 on V , we have

X


 µ∏

i=1

f
αi

i

ν∏
j=1

F
βj

j


 =

µ∏
i=1

f
αi

i

ν∏
j=1

F
βj

j


 µ∑

i=1

αiki +
ν∑

j=1

βjKj


 = 0 on V .

This shows that (3) is a first integral of the vector field X on V . �

Proof of statement (a2). From the assumptions, we have
n∑

i=1

P i(x)
∂f j

∂xi

= kj (x)f j (x) j = 1, . . . , µ

n∑
i=1

P i(x)
∂f j

∂xi

= Kj(x)F j (x) j = 1, . . . , ν.

Since xs for s = 1, . . . , r are singular points of the vector field X on V and f i(xs)F j (xs) �= 0
for i = 1, . . . , µ, j = 1, . . . , ν and s = 1, . . . , r , we get that ki(xs) = 0 for i = 1, . . . , µ

and s = 1, . . . , r , and Kj(xs) = 0 for j = 1, . . . , ν and s = 1, . . . , r . This means that
ki,Kj ∈ ⋂r

s=1 mxs
, and so ki,Kj ∈ (⋂r

s=1 mxs

)⋂
(Km−1[x1, . . . , xn]/I (V)). Since the

linear space
(⋂r

s=1 mxs

)⋂
(Km−1[x1, . . . , xn]/I (V)) has the dimension d(m − 1) − r , it

follows from the assumptions that k1, . . . , kµ; K1, . . . ,Kν are linearly dependent in the space(⋂r
s=1 mxs

)⋂
(Km−1[x1, . . . , xn]/I (V)). Hence, there exist αi, βj ∈ K not all zero with

i = 1, . . . , µ; j = 1, . . . , ν such that
µ∑

i=1

αiki(x) +
ν∑

j=1

βjKj (x) ∈ I (V) ∩ Km−1[x1, . . . , xn].

This proves the statement. �

Proof of statement (a3). The straightforward calculations give that on the variety V

X


 µ∏

i=1

f
αi

i

ν∏
j=1

F
βj

j eσ t


 =

µ∏
i=1

f
αi

i

ν∏
j=1

F
βj

j eσ t


 µ∑

i=1

αiki +
ν∑

j=1

βjkj + σ


 = 0.

This implies statement (a3). �

Proof of statement (b). Applying statement (a2) to two subsets with µ + ν + r − 1 elements
of the set formed by all the invariant algebraic varieties and the exponential factors, and after
some linear algebra and relabelling (if necessary), we get two linear dependences on V among
the corresponding cofactors
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L1 + α3L3 + α4L4 + · · · + αµ+νLµ+ν ∈ I (V)

L2 + β3L3 + β4L4 + · · · + βµ+νLµ+ν ∈ I (V)

where Ls are the cofactors ki and Kj , and αi, βj ∈ K. Correspondingly, Ms represents the
invariant algebraic variety or the exponential factor associated with the cofactor Ls . Then from
statement (a1) the vector field X on V has two first integrals (multi-valued) of the Darbouxian
type,

M1M
α3
3 . . .M

αµ+ν

µ+ν M2M
β3
3 . . .M

βµ+ν

µ+ν .

Taking logarithms to the above two first integrals, we obtain two other first integrals

H1 = ln M1 + α3 ln M3 + · · · + αµ+ν ln Mµ+ν

H2 = ln M2 + β3 ln M3 + · · · + βµ+ν ln Mµ+ν

(8)

of the vector field X on V .
An algebraic variety in Cn is clearly an analytic subvariety. Under the assumptions of

the theorem, the variety V is a complex manifold of dimension 2. So, there exist an open
cover {Uα} of V and coordinate maps φα : Uα → C

2 such that φαφ−1
β is holomorphic on

φβ(Uα ∩ Uβ) ⊂ C
2 for all α, β. Moreover, from the assumptions on the variety V and using

the implicit function theorem we may select φα such that φα = φβ on Uα ∩ Uβ .
The vector field X restricted to Uα induces an analytic vector field Xα in C

2. It has two
first integrals

Hα
1 = ln Mα

1 + α3 ln Mα
3 + · · · + αµ+ν ln Mα

µ+ν

Hα
2 = ln Mα

2 + β3 ln Mα
3 + · · · + βµ+ν ln Mα

µ+ν

(9)

where Mα
i is an analytic function formed by Mi via the holomorphic coordinate

transformation φα .
We write the analytic system in C

2 associated with Xα in the form

u̇ = Pα(u, v) v̇ = Qα(u, v) (u, v) ∈ C
2. (10)

It has the first integrals Hα
1 and Hα

2 . Each first integral Hα
i provides an integrating factor Rα

i

of system (10), which satisfies

PαRα
i = ∂Hα

i

∂v
QαRα

i = −∂Hα
i

∂u
.

So, we have

Rα
1

Rα
2

=
∂Hα

1
∂v

∂Hα
2

∂v

. (11)

This is a generalized rational first integral of (10). It follows from the fact that ∂Hα
i

∂v
for i = 1, 2

are generalized rational functions, and that if R1 and R2 are two integrating factors of a planar
vector field, then R1/R2 is a first integral of the vector field (of course, R1/R2 �≡ constant).

The composition of φα with Rα
1 /Rα

2 provides a generalized rational first integral of X on
Uα, denoted by Hα = f α

gα , where f α and gα are two analytic functions on Uα. Since we choose

the φα such that φα = φβ on Uα ∩ Uβ . Hence, we obtain from (8), (9) and (11) that f α = f β

and gα = gβ on Uα ∩ Uβ . For x ∈ V , set f (x) = f α(x) and g(x) = gα(x) if x ∈ Uα. Then
f (x) and g(x) are two globally defined analytic functions on V , and so H(x) = f (x)

g(x)
provides

a generalized rational first integral of the vector field X on V . This proves the first part of the
statement.
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From the proof of the first part, we get a generalized rational first integral H = f

g
, where

f and g are two holomorphic functions on V . For V dimension n − 2, the vector field X on V
is integrable; its integral curves are contained in the set {g = 0, or f/g = c, c ∈ C}.
Obviously, the curves defined by g = 0 or f − cg = 0 are analytic. Hence, we have finished
the proof of the theorem. �
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